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Abstract. This paper deals with the dissipative dynamics of a quantum harmonic oscillator interacting
with a bosonic reservoir. The Master Equations based on the Rotating Wave and on the Feynman-Vernon
system-reservoir couplings are compared highlighting differences and analogies. We discuss quantitatively
and qualitatively the conditions under which the counter rotating terms can be neglected. By comparing
the analytic solution of the heating function relative to the two different coupling models we conclude that,
even in the weak coupling limit, the counter rotating terms give rise to a significant contribution in the
non-Markovian short time regime. The main result of this paper is that such a contribution is actually
experimentally measurable and thus relevant for a correct description of the system dynamics.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods — 03.65.Ta Foundations of

quantum mechanics; measurement theory

1 Introduction

During the last few decades a huge deal of attention has
been devoted to the study of the quantum dynamics of
dissipative systems. The theory of open quantum systems,
indeed, is essential for the understanding of a variety of
physical phenomena in different fields of physics, such as,
for example, quantum optics and solid state physics [1].
Moreover, very recently, there has been an increasing in-
terest in the effects of decoherence, due to the unavoidable
coupling with external environment [2—4], on the dynam-
ics of quasi-closed systems used for quantum computing
and quantum information processing. The usual approach
for studying decoherence and dissipation effects starts by
prescribing a total Hamiltonian for the closed total system
(system-reservoir). Then, after tracing over the reservoir
variables and performing, if necessary, appropriate ap-
proximations, one finally derives a Master Equation ruling
the dynamics of the dissipative quantum system. One of
the most commonly done assumptions for describing open
quantum systems is the so-called Born-Markov approxi-
mation which basically consists in neglecting memory ef-
fects of the reservoir. In other words one assumes that the
correlation time of the reservoir, characterizing the time
scale on which the reservoir memory would feed back to
the system, is much shorter than the typical relaxation
time of the system. When such condition is satisfied it is
possible to derive a Master Equation describing the time
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evolution of the dissipative system for times longer than
the correlation time of the reservoir. Under this approxi-
mation the resulting Master Equation is called Markovian
Master Equations and of course does not describe appro-
priately systems interacting with natural or engineered
structured reservoirs, such as atoms decaying in photonic
band gap materials or atom lasers.

The approach reported in this paper does not rely on
the Born-Markov approximation. The only basic assump-
tion of the method used is weak coupling between system
and reservoir. For this reason our approach allows to de-
scribe non-Markovian system behaviors.

It has been very recently demonstrated by Ahn
et al. [5] that non-Markovian reservoirs may be of poten-
tial interest for quantum information processing since a
quantum system is decohered slower in a non-Markovian
reservoir than in a Markovian one.

Recently a huge deal of attention has been devoted to
the short time evolution of quantum mechanical systems
in connection to Quantum Zeno Effect (QZE) [6]. A typi-
cal feature of the Quantum Zeno dynamics is the quadratic
behavior at short times of the survival probability of the
initial state of the system, due to persistence of quantum
phase correlations. In this sense the QZE is a manifesta-
tion of the deviation from Markovian dynamics at short
times. The mathematical approach we use in this paper al-
lows to study the non-Markovian short time regimes and
therefore it is appropriate for describing Quantum Zeno
phenomena.
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In this paper we firstly derive the time-convolutionless
Master Equation describing a quantum harmonic oscilla-
tor of frequency wy interacting with a bosonic reservoir
represented as an infinite chain of harmonic oscillators of
frequencies {w;} [9-11]. The method used, exploiting a su-
peroperatorial formalism, leads to a non-Markovian Mas-
ter Equation spoiled of reservoir memory kernels [7,8]. In
words one says that such a Master equation is local in
time. By definition this means that such an equation of
motion for the density matrix is characterized by the fact
that the time derivative of p(t) only depends on the actual
value of p(t). On the contrary, in non-Markovian Master
Equations involving memory kernels, the time derivative
of p(t) is related to values p(s) of the density matrix at
times s < t.

Our aim is to analyze differences and analogies in the
dynamical behaviour of this specific open system in cor-
respondence with two different prefixed system-reservoir
couplings. The first choice is the following:

HEWA — ai ﬁ\/% (gi&l;;r + h.c.) =« (df%T + dTR) ,
(1)

usually referred to as Rotating Wave (RW) coupling. In

equation (1), @ and b; are the annihilation operators of
the system and reservoir harmonic oscillators respectively
and « is the adimensional coupling constant. Note that,
for the sake of simplicity, in the paper we use adimen-
sional position and momentum operators for the system
oscillator.

The second form of the system-reservoir interaction
Hamiltonian examined in this paper is the so-called
Feynman-Vernon (FV) coupling [12]:

5,_axzh\/@( i+ gibl) =aX (R+RT), (2)

where the operator X is related to the creation and an-
nihilation operators of the quantum harmonic oscillator
simply as
X = a+al). (3)
While the first interaction Hamiltonian is very often
used in describing quantum optics systems [13] and atom
lasers [14], the second one leads to the Master Equation
for Quantum Brownian Motion [15]. Using the Hamilto-

nian given by equation (1) instead of the more general one
given by equation (2) is usually motivated saying that the
counter rotating terms ab and aTb , appearing in equa-
tion (2), do not conserve the total unperturbed energy and
thus give a negligible contribution to the system dynamics
in the weak coupling limit.

The main result of this paper is that, in the non-
Markovian regime, the contribution given by the counter-
rotating terms is not negligible and experimentally mea-
surable, also when the weak coupling limit is invoked.

The paper is structured as follows. In Section 2 we
introduce the superoperator formalism for the derivation
of non-Markovian generalized Master Equations. In Sec-
tion 3 we specialize the generalized Master Equations to
the cases of Rotating Wave and Feynman-Vernon cou-
plings and we compare them in Section 4. Finally in Sec-
tion 5 we present conclusions.

2 Derivation of the Master Equation:
an operatorial approach

Let us consider an open quantum system interacting with
an environment whose physical nature needs not to be
specified at this moment. We indicate the total Hamilto-
nian as follows

H:H0+ﬁE+Oéﬁint; (4)

where ﬁo, H r and ﬁint stand for the system, environ-
ment and interaction Hamiltonians respectively and « is
the coupling constant. The Von Neumann-Liouville equa-
tion for the total system, in the interaction picture, is the
following

dp(t)

at ik {HI() ()]E%Hf(t)ﬁ(t). (5)

In equation (5), p and H;(t) are the density matrix and the
interaction Hamiltonian of the total system respectively,
in the interaction picture, and the superoperator Hf (t)
is defined as HY(t) = [H;(t),- |. In the rest of the pa-

per, given a certain operator /1, we will use the follow-

ing notation for the “commutator "and “anticommuta-
tor” superoperators:
A=[4-]  AT={4-] (6)

In deriving the generalized Master Equation we assume
that at t = 0 system and environment are uncorrelated,
that is p(0) = p(0) @ pr(0), with p and pg density matri-
ces of system and environment respectively and that the
environment is stationary, i.e. [ﬁE, pE] =0.

A formal solution of equation (5) can be written as

p(t) = T(t)p(0), (7)

where the superoperator T(t) is defined as the solution of
the equation:

(1) = SHS(0T(), (5)

with T(O) = 1. Remembering that p(t) = Trg {p(¢)} and
that p(0) = p(0) @ pr(0), after tracing over the environ-
mental varlables equation (7) becomes

p(t) = Tre {T(1)pe(0)} H0)
= (T(1)p(0) = (1+ M(1)30),  (9)
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where we have indicated with (T(t)) the superopera-
tor (1 4+ M(t)) = Trg {T(t)pe(0)}, acting on the space
Hs @ HZ, with H Hilbert space of the system. Differen-
tiating now equation (9) yields

(1)

= M()5(0). (10)

[N

Inserting in equation (10) the expression for 5(0) obtained
inverting equation (9) gives

dp(t . 1. .
0 _ (¥1n) [+ M) () = Kwan. (1)
In the previous equation we have defined a new superoper-
ator K(t) acting on the space Hs @ HZ too. At this point

it is worth spending few words on the existence of K(t),

that is of the inverse superoperator [1 + M(#)] ™. To this
aim, we recast K(t) in the form

K(t) = (V1) [1+M(6)] " = (V1) > (~M@)"
' (12)

The problem of the invertibility of the superoperator
[1 4+ M(t)] has been partly addressed in references [16,8].
Although, at the best of our knowledge, a rigorous math-
ematical study of the conditions under which such a su-
peroperator can be inverted does not exist in the litera-
ture, the following considerations can be done. The su-
peroperator M(¢) has the obvious properties M(0) = 0
and M(t)|,_, = 0, as one can directly infer from equa-
tions (8) and (9). Hence, invoking the continuity of M(t)
int =0, [1+M(t)] may be inverted for not too large
couplings and small ¢. For large couplings and/or large
time intervals it may happen that the inverse of such an
operator does not exist. It is worth noting, however, that
time-convolutionless Master Equations have been success-
fully used to describe non Markovian dynamics in many
different physical situations (see Chapt. 10 of Ref. [8] for
a review).

Now, it is easy to convince oneself that a formal solu-
tion of equation (8) may be written as

o t s
T(0) = oxp, |7 [ B dn| =
0 —

>

tn—1
/ H7 (t)H (t1) - - Hf (t,) dt1 - - - dt,,  (13)
0

where the subscript ¢ in the exponential stands for the
Dyson chronological order, i.e. t, > t,_1 - > t1 > t. In-
serting such an expression into equation (11) with the help
of equation (9) and collecting all the terms proportional
to the same power in «, it is possible to demonstrate that
the following expansion holds:

n=0

(14)

with

,
(lh //tl/tn 15 (OHF (1) - H (1) et - - di

(15)

In the previous equation we have indicated with ({--)),.c.
the temporal ordered cumulants [19]. As an example, we
report the expression of the first and second cumulants,
respectively:

((HF (1))o.c. = (HF (1))
((HF (0HF (t1)))o.c. = (HF ()HF (1))
—(H7 (8))(H7 (). (16)

The form of equation (15) resembles the result ob-
tained by Van Kampen in the context of stochastic dif-
ferential equations [17,18].

The origin of the expansion given by equations (14)
and (15) can be understood as follows. Let us write the
superoperator K(¢) defined by equation (12) in following
symbolic form

where
% FIA(t)] = <%A(t)> F'[A]. (18)
In equation (17) the symbol (- --) = Trg{---pp} de-

scribes an operation of average over the environmental de-
grees of freedom. The expression (exp,.(F fo H7 (t1)dty)))
can thus be seen as the generahzatlon in the su-
peroperator formalism, of the concept of characteris-
tic functional [20]. As a consequence the superoperator
In[(exp.(F fo H7 ()))] is the generalization of the gener-
ator of cumulants introduced in standard textbooks. This
circumstance makes it clear why the integrand in equa-
tion (15) is called temporal ordered cumulant. In view of
equation (17) the existence problem of the superoperator
K(t) can be traced back to the convergence of the series
of cumulants in equation (14).

In order to derive the explicit form of the general-
ized Master Equation, let us assume a bilinear interaction
Hamiltonian of the form:

=a ZAi(t)Ei(t) =aA(t)-E(t), (19)
where A(t) = (Al(t),/ig(t),...,

(Bv@), Ba(t), ..., Bul)
erators respectively. In the weak coupling limit we may
stop the cumulant expansion given in equation (14) to the

An(t)) and E(1) =

) are system and environment op-
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second order in the coupling constant. In view of equa-
tions (11, 14) and (15 ), this leads to the following Master
Equation

L 00
- %/0 [(HT () HF (t1)) — (HF (1)) (HF (t1))] dt1p(2).

(20)

Assuming for simplicity that the form of the environmen-
tal density matrix satisfy the condition <E‘Z> = trF; pEFE =
0 (as for example in the case of a thermal reservoir), one
can show that the first term of equation (20) vanishes at
every time t. The explicit manipulation of the second term
is presented in Appendix A and leads to the following final
form of the non-Markovian generalized Master Equation:

%(tt) - 21 </0 (ki (T) A () AS (t —7)

— i (T)AT (AT (t = 7)] dT) p(t)

= — [D(t) — G (1)) p(t) = LB (1),

where definitions of equation (6) have been used. In equa-
tion (21) we have introduced the environment correlation
ki j(7) and susceptibility p; ;(7) matrices, with 7 =t —t;.
Such quantities, characterizing the temporal behavior of
the environment, are defined as follows

(21)

ri(7) = 505 ({B.(), Bi(0)}). (22)
ps) = 2 ([B.BO]) - @)

The form of equation (21) has a clear physical
meaning. One can show that the superoperator D(¢) is
strictly connected with diffusion (decoherence) processes
only [21]. The superoperator G(t), describing the dissi-
pation processes and frequency renormalization, on the
other hand, arises from a quantum mechanical treatment
of the environment and, indeed, vanishes when a semi-
classical description of the environment is used (see also
Eq. (23)) [21].

In the next section we further carry on the calculations
in order to obtain and compare the two non-Markovian
Master Equations corresponding to the Rotating Wave
and Feynman-Vernon couplings respectively.

3 Rotating wave and Feynman-Vernon
couplings in the non-Markovian regime

Let us consider a quantum harmonic oscillator whose
Hamiltonian is given by:

i1y = 10 (P2 +X2) = hwo (afa+1/2),

: (24)
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with wy frequency of the harmonic oscillator. The sys-
tem interacts with a bosonic reservoir at T' temperature
of Hamiltonian

e = 1Yo (8 +1/2) (25)
1=0

with w; frequencies of the reservoir oscillators.

3.1 Feynman-Vernon coupling

Let us begin discussing the Feynman-Vernon interaction
Hamiltonian, given by equation (2). Such a coupling is of
the form of equation (19) where, in the interaction pic-
ture, A(t) = X (t) and E(t) = R(t) + RT(t). Our aim is to
manipulate equation (21) in order to obtain the specific
non-Markovian generalized Master Equation appropriate
for our system. In this section we will sketch the main
steps of the derivation. More details can be found in Ap-
pendix B.

First of all let us write the Master Equation given in
equation (21) in the Schrédinger picture. Introducing the
superoperator

1

To(t) = exp [—Hgt] , (26)

ih
with H, given by equation (24), and transforming in
the Schrédinger picture the superoperator L(t) defined in
equation (21)

L (t) = To(t) L(t) Tg™ (1), (27)
our generalized Master Equation becomes
dps(t 1 . .
pst( ) {FLHE? —Ds(t) +iGs(t) | ps(t), (28)

with pg density matrix of the harmonic oscillator in the
Schrédinger picture. In Appendix B we show that the su-
peroperators Dg(¢) and Gg(t) can be recast in the form

t
Ds(t) = / K(T)X5 (cosworX® — sinworP?) dr,  (29)
0

t
Gs(t) = / N(T)XS (cosonXE — SinonPZ) dr, (30)
0

where P° and P¥ are the “commutator” and “anticom-
mutator” superoperators associated to the operator

A i

P=—(at-a),

)
and k(1) = k11(7) and p(r) = p1,1(7) are defined by
equations (22-23). Inserting equations (29-30) into equa-

tion (28) we get
dps(t) _ 1

dt ih

—57 (X% + i ()X5P s ().

(31)

HS — [A(t)(XS)Q — I($)X5PS

(32)
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The time dependent coefficients appearing in the previous
equation are defined as follows

A(t) = /0 " () cos(wor)dr, (33)
)= [ utr)sinear)ar (31)
() = /O " () sin(wor)dr, (35)
r(t) = 2 /O " () cos(wor)dr. (36)

From the form of equation (32), and remembering that
H3 may be written as

1
HY = [(P?)° + (X)),
it is not difficult to convince oneself that the term having
coefficient r(t) gives a renormalization of the oscillator
frequency.

As usually done in standard textbooks [13], this term
can be included in the definition of wy. In the following we
neglect such term since it is possible to prove that such
an approximation is always justified in the weak coupling
regime o < 1, provided that the reservoir frequency cut-
off remains finite.

Under these conditions, the Master Equation, in the
interaction picture with respect to ﬁo, assumes the form

W) _ Ay xS 1) — (X5 (1)PS (1)

dt
+ ()X ()P (1)] A(t)-

(37)

(38)
The time dependent superoperators appearing in equa-
tion (38) are those related to the operators

X (t) = X cos(wot) + Psin(wot), (39)

P(t) = P cos(wot) — X sin(wot). (40)
Equation (38) can be exactly solved in an operatorial way
and the solution has an operatorial form [23,24]. This fact
may be exploited to fully disclose both the short time
non-Markovian and the asymptotic Markovian behaviors
characterizing the dynamics of the system, as we will see
in Section 4.

3.2 Rotating wave coupling

The generalized Master Equation correspondent to the in-
teraction Hamiltonian given by equation (1), derived fol-
lowing the same procedure presented in the previous sec-
tion, is (see also Appendix C)
dp(t - s RWA (¢ s b
ili) _ {ARWA(t)aT as 1 - (t) (aT a® _ aSal )

+ i7"PNVA(15) (aTSaZ + asafz)} p(t).

; (41)

101

The time dependent coefficients appearing in this
equation are defined as follows

ARWA . ¢ I{RWA \dr
AWAG) = [ R o) (42)
A = [l rar, (43)
0
A =2 [, (44)
0
where
) = g ({Ro R O} + {7 0,70} )
(45)

2h2 \ | i
(46)
RWA io? /T2 2t ] [ot 2]

W0 = oz ([0 R )] - R 0.0 ),

) - ()
and ]%(t) is the operator (see Appendix C)

YTWEE Y [T SRS 4

R(t) = i;h,/ 5 gibie . (48)

In the Schrédinger picture equation (41) takes the form

. 1 )
dpgt(t) = [EHOS + irfWA (1) (aTa)S - ARWA(t)aTSaS
~RWA (4 s END
- VT() (aT a¥ —aal )] ps(t). (49)

The term proportional to rfWA (t) gives rise to a renor-
malization of the oscillator frequency as for the Feynman-
Vernon case, described in the previous subsection. There-
fore, proceeding with the same considerations and passing
to the interaction picture, we obtain the following gener-

alized Master Equation for the system
dp _ ATVA) 1 4VA)

ot 2
A’RWA (t) o ’YRWA (t)

[atap — 2apa’ + patal

[aa’p — 2a'pa + paa’] .
(50)

Let us note that this Master Equation, differently from
the one obtained for the FV coupling (see Eq. (38)), is in
the Lindblad form as far as the time dependent coefficients
ARWA (1) £ yBWA(3) are positive. This is usually the case
for typical reservoir spectra and parameters, as we have
discussed in [24].
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Fig. 1. There are four distinct terms in the Hamiltonian given by equation (52). The events represented in the first two
diagrams (a, b) correspond to real processes.The last two diagrams (c, d), instead, describe events corresponding to virtual

processes.

4 Comparison between the RW
and the Feynman-Vernon coupling models

In the previous section we have seen that starting from a
FV coupling or from a RW coupling of an harmonic os-
cillator with a thermal reservoir it is possible to obtain a
generalized Master Equation local in time describing the
dynamics of the oscillator. This fact is not surprising. In-
deed, as underlined by Paz and Zurek in [21], “perturba-
tive Master Equations can always be shown to be local in
time”. It is worth noting that, as far as the FV interaction
model is concerned, an exact Master Equation, valid for
every value of the coupling strength, has been derived [22].
We have verified that the FV Master Equation given by
equation (38) coincides with the weak coupling limit of
the exact Master Equation of reference [22].

The Master Equations we have derived in the paper
are based on the weak coupling assumption but do not
rely on the Born-Markov approximation so we are able
to examine the non-Markovian short time behavior of the
system under study. In addition such equations of course
describe the correct Markovian long time asymptotic be-
havior [24].

The different structure of the two Master Equations
given by equation (38) and (50), traceable back to the two
different coupling Hamiltonians, are responsible for the
occurrence of some physically transparent changes in the
oscillator dynamics, more marked in short time regime.

To better understand the physical origin of such dif-
ferences let us have a closer look at the two interaction
Hamiltonians:

HRVA _ (dRT +af R) (51)

AP = q [(aRT + aTR) + (aR + aTRT)} . (52)

We take advantage of a pictorial representation of
the four different interaction terms appearing in Hamilto-
nian (52) (see Fig. 1). The events represented in the first

two diagrams (a, b) are processes of absorption or emis-
sion in which energy is conserved. The last two diagrams
(¢, d), on the contrary, describe events not corresponding
to real absorption and emission processes. For this reason
such processes are called virtual processes. In the second
order in perturbation theory both the two real and virtual
processes combine to give rise to real processes hereafter
called alpha and beta processes respectively (see Fig. 2).

Thus when we use the Feynman-Vernon coupling in-
stead of the Rotating Wave one, the channels through
which the oscillator exchanges energy with the reservoir
are doubled. The asymptotic long time behavior describes,
of course, thermalization in both cases. These particular
features give rise to different predictions of the short time
behavior of physical quantities, such as for example the
mean number of quanta (7)(¢) of the system oscillator
(heating function), depending on which of the two system-
reservoir coupling models is used. We show in the following
that such different behaviors are, in principle, experimen-
tally observable and thus relevant for the correct descrip-
tion of the complete dynamics of the system.

Let us consider, as initial state of the system, the vac-
uum. It is well known that, in this case, due to the inter-
action with the thermal reservoir at T temperature, the
system experiences heating processes leading to thermal-
ization. In reference [24] it has been shown that, for the
FV coupling, the non-Markovian time evolution of (7)(t),
in the weak coupling limit, is given by [23,24]

(i) < o)~ |27 [ la() () + 5) ] L
()

where n(w) is the mean number of reservoir excita-
tions at T temperature and g(w) is the reservoir spec-
tral density.
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Process alpha
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Process beta

Fig. 2. Two real processes combine to give rise to the real process alpha. Two virtual processes combine to give rise to the real

process beta.

For the RW coupling, similar calculations yields the
following expression

@ <) - |a? [ ulgt)Pats] 5

(54)

Comparing these last two equations one sees immedi-
ately that, for short time intervals, (n)(t) ~ 2(R)FWA (1),
meaning that the system-reservoir FV coupling model pre-
dicts an initial heating of the system faster than the one
predicted by the RW coupling model. This fact can be
easily traced back to the doubling of channels for energy
exchange illustrated in Figure 1. Note that both equa-
tions (53) and (54) show an initial quadratic time depen-
dence. In other words for short times the depopulation of
the ground state due to heating is nonexponential. Such
a circumstance suggests the possibility of hindering the
heating process by performing rapid measurements of the
ground state population. However, as the quadratic behav-
ior persists for a short time only, such a technique could
be very difficult to implement experimentally [25].

On the other hand, in the long time asymptotic limit,
(R)(t) and (n)BWA(¢) have, as expected, the same temporal
behavior [23,24]:

(n)(t > wp') =)Vt > wp!)

~ n(wo)(1 — exp[—ma’wo|g(wo)|*t]), (55)

since, due to the time-energy uncertainty principle, for
long times ¢, 5 processes (see Fig. 2) are very unlikely to
happen in the weak coupling regime.

Summing up the two system-reservoir coupling mod-
els under scrutiny predict the same asymptotic long time
behavior for the observable (7)(¢) but different non-
Markovian short time behaviors. It is worth noting that,
once known the system and reservoir parameters, the only
phenomenologic constant is the coupling constant a.. Such
quantity is usually estimated from the experiments [26]. If
we now assume that experiments may be performed in all
the relevant time scale, that is both in the asymptotic long
time regime and in the non-Markovian short time regime,
one can use the value of the coupling constant experimen-
tally measured in the asymptotic long time regime (see
Eq. (55)) to verify if the correct short time behavior is ac-
tually the one predicted by equation (53)(FV coupling) or

the one given by equation (54) (RW coupling). In fact, one
would expect that, since the complete Feynman-Vernon
coupling is more general than the RW coupling, it is also
more fundamental and thus it should give the correct de-
scription of the dynamics of the system.

5 The RWA in the Feynman-Vernon model:
comparison with the RW model

Let us now consider again the final form of the general-
ized Master Equation, given by equation (38) with equa-
tions (39-40), derived for the FV coupling. To further sim-
plify the calculation one could think to perform a Rotating
Wave Approximation (RWA) averaging on an interval At
the rapidly oscillating trigonometric functions appearing
in equation (38) through equations (39-40). Under such
conditions, that is for 2wy At > 1, equation (38) assumes
the form

T - [ oy
+i¥ (X5P¥ — P X*¥) | p(t). (56)

Having in mind equations (3) and (31), after some
straightforward calculations the following Master Equa-
tion is obtained

dﬁ A(t)+’)/(t) R PPN Ant oA
’ f [aﬁap — QGPGT - Pajra}
A_
M [@@T,s — 24t pa + ﬁdd*] , (57)

with A(t) and ~(t) defined by equations (33-34). It is
important to note that equation (57) is in the Lindblad

form as far as the sum and difference coefficients (A(t) —
v(t)) and (A(t) + v(t)) are positive [23].

In reference [24] we have used the Master Equation
given by equation (57) to describe the heating process
of single trapped ions. Using an operatorial approach
we have developed in [23] to solve time-convolutionless
Master Equations, we were able to study both the short
time non-Markovian and the asymptotic long time Marko-
vian behaviors of the heating function.
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Fig. 3. (a) Asymptotic long time behavior of the coefficients A(t) (black line) and ARWA(t) (gray line). (b) Asymptotic long

time behavior of the coefficients ~(t) (black line) and ~v

An interesting feature of equation (57) is that it has
the same structure of the Master Equation obtained start-
ing from the RW coupling (see Eq. (50)). Indeed, one sees
immediately that the difference between the Master Equa-
tion obtained starting form the FV coupling and perform-
ing after the RWA, and that one obtained starting from
the RW coupling relies only on the time dependent coef-
ficients of the ME. Let us have a closer look at the form
of such coefficients. In the limit of continuous modes they
are written as:

) =
202 [ [~ elato
// g () +3)

X cos[(w — wp)7]dwdT,

e[ 3
JRA (1 // 29l

where n(w) = (exp[] — 1)71 is the number of reservoir
excitations at T temperature. In the following we assume
an Ohmic environment characterized by a reservoir spec-
tral density having frequency cut-off w., as for example

the Drude spectral density

(n(w) + %) cos|wr] coslwor]dwdr,
(58)

ARWA
(59)

w)|? sinwr] sin[weT]dwd,

(60)

|? cos|(w — wo)7]dwdr,

(61)

1 w2
2 c
wf=-———2—. 62
|9( )| 3 2 ( )

A noticeable difference between the A(t)(y(t)) and
ARWA (1) (vBWA (1)) coefficients is that in the last one the

RWA (t) (

gray line). In both graphics we have put we = wo.

anti-resonant term cos[(w + wp)7] is absent. Such a cir-
cumstance leads to distinguishable short time behaviors
of the FV and RW coefficients.

It is indeed possible to prove that in A(t), for t < w1,
alpha and beta processes give rise to the same contribu-
tions linear in ¢ so that A(t) ~ 2ARWA(¢).

As far as y(t) is concerned, on the contrary, the same
processes cancel each other at the first order in ¢ in such
a way that, for t < w1, y(t) o t3 whereas YRWA(t) o t.

In the asymptotic Markovian long time regime we
have, as expected, that A(t > w 1) ~ ARWA(£ » 1)
and y(t > w; 1) ~ yFWA(t > 1) as shown in Figure 3

At this point it is worth making some considerations
on the validity of the RWA performed to derive equa-
tion (57). As we have already said at the beginning of
this section, the RWA consists in neglecting terms oscil-
lating at the frequency 2wg. In other words performing
the RWA amounts at looking at the course-grained struc-
ture of the dynamics of the systems. For this reason we
cannot describe correctly the dynamical features in a time
interval such as At < wy’ ! Very often one deals with situ-
ations in which the characteristic frequency of the system
wo is smaller or much smaller than the reservoir frequency
cut w.. Under this circumstances, normally, we cannot rely
on the short time expressions of the FV coefficients A(t)
and 7(t) since they are valid for times ¢ < w;! < wy '
However, there are two cases in which one can use the Mas-
ter Equation given by equation (57) to describe correctly
the non-Markovian short time behavior of the system:

1. whenever one wants to look at situations in which wg >
we, as discussed for example in [16,25];

2. whenever we are interested in the mean value of a cer-
tain class of observables, like for instance the number
operator (afa)(t) (see [23,24]).

In this last case, indeed, it has been shown [23] that, in
the weak coupling limit, it is equivalent to use the solution
of the the Master Equations (38) or (57) since they lead
to the the same analytic expressions for the expectation
value of the observable of the class before mentioned.
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6 Summary and conclusions

We have described a procedure, based on superoperator
formalism, to derive, in the weak coupling limit, non-
Markovian generalized Master Equations local in time.
Such a method is equivalent to the time-convolutionless
projection operator technique in the sense that it leads
to the same generalized Master Equation. We apply this
procedure to derive the Master Equation for a specific sys-
tem, namely a quantum harmonic oscillator coupled to a
thermal reservoir at T’ temperature. We compare two dif-
ferent microscopic system-reservoir coupling models: the
Feynman-Vernon and the rotating wave couplings. Both
couplings are bilinear, but the first one is more general
and thus, in this sense, it is more fundamental. Very often
however, in quantum optics systems, the Rotating Wave
coupling is used because the counter rotating terms not
conserving the unperturbed energy cannot contribute to
the system dynamics. The main result of our paper is to
establish under which conditions such a claim is effectively
correct. By comparing the analytic solutions of the heat-
ing function relative to the two different coupling models
(FV and RW couplings) we conclude that, even in the
weak coupling limit, the counter rotating terms give in-
deed a significant contribution in the non-Markovian short
time regime. Such a contribution is actually experimen-
tally measurable, provided that one can perform exper-
iments in all the time scale relevant for the system dy-
namics. To this purpose it is worth noting that in the
context of trapped ions experiments have been performed
in which the system (single harmonic oscillator) is first
cooled down to its zero point energy and then coupled
to a properly engineered reservoir [26]. We note that, in
such experiments, it is possible not only to choose at will
the reservoir parameters, but also to engineer the coupling
and control the coupling strength. Therefore, the great ex-
perimental advances of the trapped ion techniques could
make it possible to perform an experiment aimed at prov-
ing the relevant role, in the short time dynamics, of the
usually neglected counter rotating terms.

One of the reasons for which one usually prefers to
work with master equations derived starting from the RW
coupling model is related to the fact that the resulting
Master Equation, in the Born-Markov approximation, is
in the Lindblad form differently from the case in which the
Feynman-Vernon coupling is assumed (see Master Equa-
tion for Brownian motion). We have demonstrated here
that also the non-Markovian Master Equation obtained
starting from the RW coupling is in the Lindblad form,
for some value of the relevant system and reservoir pa-
rameter. Moreover, by looking at the analytic expression
of the time dependent coefficients of our non-Markovian
generalized Master Equations one can infer the conditions
under which one passes from Lindblad to non Lindblad
Master Equations. Remembering that the Master Equa-
tions given by equations (50) and (57) are of Lindblad
type when their time dependent coefficients are positive,
indeed, it is not difficult to convince oneself that such con-
ditions are simply related to the change of the sign of the
coefficients. Therefore the form of the RW Master Equa-
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tions derived in this paper allows to study the border sep-
arating two very different physical regimes characterized
by very different system dynamics [16] and, for this reason,
makes it possible to gain more insight in the fundamental
dissipative processes of one of the most extensively stud-
ied physical systems: a harmonic oscillator coupled to a
thermal reservoir.

Another new result we have obtained in this paper
stems from the comparison between the master equations
derived in the following two cases:

1) Feynman-Vernon system reservoir coupling followed
by the RWA performed after tracing over the reservoir
degrees of freedom;

2) Rotating Wave system reservoir coupling.

Stated another way we look at the differences in the
system dynamics arising from the two following approxi-
mations respectively:

1) average over rapidly oscillating terms after tracing
over the reservoir variables;

2) neglecting the counter rotating terms in the initial
microscopic coupling model.

We have shown that the Master Equation obtained
from the Feynman-Vernon coupling, after performing the
RWA, is of the Lindblad type and it actually has the same
structure of the RW Master Equation, with different time
dependent coefficients. We have demonstrated that these
two different approximations lead to different short time
behaviors, while in the asymptotic long time Markovian
regime the two correspondent Master Equations do coin-
cide. However we have proved that performing the RWA
after tracing over the reservoir variables is a less restric-
tive approximation than starting with the RW coupling
model. Indeed, differently from the RW Master Equation,
the Feynman-Vernon one + RWA, takes into account the
virtual photon exchanges relevant in the short time dy-
namics and thus it predicts the correct non-Markovian
short time behavior, provided that ¢ > wy L

One of the authors (S.M.) acknowledges financial support from
Finanziamento Progetto Giovani Ricercatori anno 1999, Comi-
tato 02.

Appendix A: The general Master Equation

In this Appendix we sketch the derivation of equation (21)
from equation (20). Let us consider an interaction Hamil-
tonian with the form

Hi(t) = aAi()Ei(t) = aA(t) - B(t), (63)
where for simplicity we have used Einstein notation. Using
some algebraic properties of the superoperators one can
show that if [A;, E;] = 0 then

- - 1
(AOE (1) =3 (AiSEiE + AiEEiS) . (64)
Exploiting the properties of the trace and the assump-

tion (E;) = trE;ppE = 0, one gets

trEfpp(0)E =0,  tEXpp(0)E=0.  (65)
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Consequently
(Hi®(¢)) = wE7 pp(0)E
E7 (1)) A7 (t) + (E7(t)) A7 (1)) = 0. (66)

In the same manner it is not difficult to show that

(Hi®(t)Hr" (1)) = i ((E7 (DE7 (1) AT () AT (1)
+ (EF(ES (1) AS (AT (1)), (67)
where the equalities
(E7 (DE7 (1)) = (E7 (OES (1)) =0, (68)

have been used. After some algebraic manipulation one
gets

(B (DEF (1)) =

(E7 (B (1)) =

2({E7(t — t1), B (0)}),
2([E7(t — 1), B (0)]),

where the square an curl brackets indicate the commutator
and anti-commutator respectively.

Substituting these expressions into equation (20) and
using the definitions of the correlation and susceptibility

matrices one obtains the general Master Equation given
by (21).

Appendix B: Derivation of FV Master
Equation

In this appendix we present the superoperatorial mathe-
matical properties allowing to derive the final form of the
FV Master Equation, given by equation (38) discussed in
this paper. First of all let us consider the following super-
operatorial relations

[AS,BS] = [AZ BZ] - [A B]Sv
(A%, B¥] = [4, B]”.

Starting from these equations and having in mind the
Baker-Hausdorff formula one gets

AS(E)(t) = exp [iBSt} A5 exp [—'Bst]

= (cxp [iB5] 4 exp [fiBStDS(Z) (Ae ))w’.
(73)

The previous relation says that the time evolution of
superoperators is ruled by equations analogue to those
of the operators in Dirac’s formalism. Then, specifying
equation (21) to the system under scrutiny and using
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equations (24) and (28) yields

Ds(t) = /Ot k(1) To(t) X¥ ()X (t — 7) Ty (t)dr

t

= /0 r(T)XSX5 (—1)dT

- /O t K(T)X5 (cosworX® — sinwoTP?) dr, (74)
asi - | (P To() XSOXE(t — ) Ty (0)dr

_ /O XX ()

- /O W)X (coswrXE — sinwyrPT) dr. (75)

Appendix C: Derivation of the RW Master
Equation

In this Appendix we underline the essential steps in the
derivation of the RW Master Equation given by equa-
tion (41). Let us note that, in interaction picture, the
Hamiltonian given by equation (1) assumes the form

HEWA (1) = o Z h\/7 (g e~ wotplelwit 4 1 c. ) (76)

From a mathematical point of view it is convenient
to associate all the time dependent phase factors to the
reservoir operators as follows

).

2t
(dR (t)+a
Zh\/>glbe Hwi—wo)t,

For the system here considered, thus, the operators
appearing in the bilinear form defined in equation (19)

are A(t) = A = (a,al) and E(t) = (Pf (t), R(1)).

Exploiting the properties of superoperators given by
equation (71) and (72), with some algebraic manipulation,
the Master Equation given by equation (21) can be recast
in the form given by equation (41). Finally we write such
a Master Equation in the Schrédinger picture exploiting
of the following property

HEWA () = o (77)
with

(78)

To(t) al”a®® T3 (1) =

S
— atSas®),

(dT e—iwgt)S(d elwgt)S(Z‘)
(79)
with To(t) defined by equation (26). Concluding, we note
that, the superoperator proportional to r®WVA(t), appear-
ing in equation (21), can be recast in the form

% (aTSa + a%al ) (de)S. (80)
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Thus the corresponding term in the RW Master Equation
is a frequency renormalization term. Neglecting this term
and going back to the interaction picture one gets the final
form of the Master Equation, given by equation (50).
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